affect the quality of a semiconductor in a liquid junction solar cell. Since "prompt" carrier separation is essential, and since carriers are separated more rapidly by the field associated with the depletion region than by mere diffusion, it is essential to exclude high concentrations of impurities which increase the concentration of the majority carrier and thus shrink the depletion layer to below the absorption length. Impurities which do not change the carrier concentration must be avoided only if they trap one of the carriers, substantially reducing its mobility. Thus, we believe that not all impurities in semiconductors are damaging to the performance of semiconductor liquid junction solar cells.

The "laser off" experiments of Figures 2-4 correspond to a level of irradiance, I_1 (Figure 6), at which there is no saturation. Consequently, a change in irradiance (ΔI) produces a similar change in current (Δi) in both the imperfect semiconductor with a high recombination rate and in the one with the better material having a low recombination rate. The photocurrent spectra of the unetched and etched materials are thus not greatly different. Once the irradiance is increased to I_2 ("laser on") a change in irradiance (ΔI) produces no change in the photocurrent (Δi) in the unetched material but continues to produce in the etched sample a current increment (Δi) identical with the earlier one. Consequently, the invariance of the photocurrent spectrum with irradiance at or above solar levels is an excellent indicator of the adequacy of the quality of a semiconductor in semiconductor liquid junction cell applications.

Using this criterion, we succeeded in attaining solar to electrical conversion efficiencies of 8-9% in several semiconductor liquid junction solar cells (Table I). The approximate short circuit current ("quantum") efficiencies range from 65 to 80% and would be closer to 100% if corrected for interface reflection and for solution absorption losses. Typical current-voltage curves for the unimproved ("unetched") and improved ("etched") CdSe cells are shown in Figure 7 of ref 7. At a typical solar irradiance (75 mW/cm²) a 40-fold improvement in efficiency is observed between the two samples.

Experimental Section

The crystals used, the electrical contacts, the electrode structures, the auxiliary electrodes, the solutions, the light sources, the spectroscopic equipment, the electrochemical instrumentation, and the experimental method of measuring efficiencies are given in ref 7 except for the following. Cubic n-CdTe crystals cleaved in the (100) plane were purchased from Cleveland Crystals Inc., Cleveland, Ohio. The conductivities of the crystals were at least 0.1 Ω^{-1} cm⁻¹. Ohmic contacts were formed to the back of CdTe plates with indium amalgams. Sn and Si doped (100) and (111) cleaved GaAs crystals were used. The contacts to these were made with successively evaporated tin, palladium, and gold layers. The active crystal face was brought to 1 ± 0.5 mm of the window to minimize solution light absorption. In the CdTe and GaAs experiments the solution was 1 M K₂Se-0.1 M Se-1 M KOH. A 1-mm thick layer of this solution cuts off 50% of the light near 500 nm. CdTe crystals were etched for 30 s in a 1:1:1 solution of concentrated HCl, concentrated HNO₃, and saturated K₂Cr₂O₇. GaAs was etched in a 1:1:4 solution of 30% H₂O₂, water, and concentrated H₂SO₄ for 30 s. The initial spectra and voltammetric characteristics of all crystals as supplied could be changed by etching and restored by polishing with Linde A (0.3 μ alumina).

Acknowledgments. The authors wish to thank Howard Reiss and Bertram Schwartz for useful discussions.

References and Notes

- (1) H. J. Hovel, "Semiconductors and Semimetals," Vol. 11, "Solar Cells", Academic Press, New York, N.Y., 1975, Chapter 2. (2) H. Gerischer, *J. Electroanal. Chem.*, **58**, 263 (1975).
- (3) A. B. Ellis, S. W. Kaiser, and M. S. Wrighton, J. Am. Chem. Soc., 98, 6855 (1976).
- (4) A. B. Ellis, S. W. Kaiser, and M. S. Wrighton, J. Am. Chem. Soc., 98, 6419 (1976).
- (5) B. Miller, A. Heller, M. Robbins, S. Menezes, K. C. Chang, and J. Thomson, (b) W. W. Anderson and Y. G. Chai, *Energy Convers.*, **15**, 85 (1976).
 (c) W. W. Anderson and Y. G. Chai, *Energy Convers.*, **15**, 85 (1976).
- (7) A. Heller, K. C. Chang, and B. Miller, J. Electrochem. Soc., 124, 697 (1977)
- (8) J. I. Pankove, "Optical Processes in Semiconductors", Prentice-Hall, Englewood Cliffs, N.J., 1971, Chapter 3.
- (9) K. C: Chang, A. Heller, B. Schwartz, S. Menezes, and B. Miller, Science, 196, 1097 (1977).

Anisotropic Motion inside a Micelle

F. M. Menger* and J. M. Jerkunica

Contribution from the Department of Chemistry, Emory University, Atlanta, Georgia 30322. Received August 4, 1977

Abstract: Carbon-13 spin-lattice relaxation times have been determined for monomeric and micellar ω -phenylalkanoic acids in aqueous base. Micellization decreases T_1 's markedly for the aromatic carbons, e.g., T_1 (para) = 2.9 and 0.39 for monomeric and micellar ω -phenyldecanoic acid, respectively. Moreover, micellization increases $R = T_1(\text{ortho})/T_1(\text{para})$, a parameter indicative of anisotropic motion by the aromatic system. Thus, R = 3.6 for micellar ω -phenyldecanoate (compared, for example, with a value of only 1.8 for biphenyl). The results are interpreted in terms of an 11-fold faster rotation about the carboncarbon bond linking the benzene ring with the chain relative to rotations about axes perpendicular to this bond. Diluting the phenyl-substituted surfactants with simple straight-chain surfactants (SDS and DTAB) does not suppress values of R significantly; hence, anisotropic motion within a micelle cannot be ascribed solely to phenyl/phenyl interactions. Anisotropic motion inside a micelle is shown to depend on the depth of the phenyl ring, the pH, and the presence of additives. A comparison of the micellar T_1 values with those in glycerol solutions of different viscosity demonstrates that the micelle interior is relatively fluid.

Problems of organization are intimately involved in living systems where thousands of reactions occur simultaneously. Because of the close relationship between life and molecular order, more and more attention is being focused on organized assemblages such as the micelle. Micelles and related aggregates provide information not available from the usual studies

Table I. ¹³C Spin-Lattice Relaxation Times and Anisotropy Parameters for ω-Phenylalkanoic Acids, C₆H₅(CH₂)_nCOOH, at 37.8 °C

п	Concn, M	Solvent	pDª	Additive	T_1 (ortho)	T ₁ (para)	R ^b
7	0.50	CH ₃ CN ^c			7.4	3.5	2.1
9	0.50	CH ₃ CN ^c			6.1	2.9	2.1
1	0.50	29.5% glycerol/ D_2O^d			2.5	1.4	1.8
1	0.50	68.1% glycerol/D ₂ O ^e			0.49	0.27	1.8
1	0.50	D ₂ O	12.7		5.3	3.1	1.7
3	0.50	D_2O	12.7		3.5	2.0	1.8
7	0.50 ^f	D_2O	12.7		1.6	0.59	2.7
9	0.50 <i>g</i>	D_2O^h	12.7		1.4	0.39	3.6
9	0.50	D_2O	12.7	0.50 M NaCl	1.2	0.38	3.2
9	0.50	D_2O	12.7	4.0 M urea	1.2	0.43	2.8
9	0.50	D_2O	12.7	0.10 M DTAB ⁱ	1.1	0.34	3.2
9	0.50	D_2O	12.7	25% EtOH	1.8	0.74	2.4
9	0.10	D_2O	9.6	0.40 M SDS ^j	1.4	0.42	3.3
3	0.10	D_2O	9.9	0.40 M SDS	2.8	1.5	1.9
9	0.50	D ₂ O	9.5		1.1	0.44	2.5

^{*a*} pD = meter reading + 0.4. ^{*b*} R = $T_1(ortho)/T_1(para)$. ^{*c*} Contained 5% D₂O (v/v). ^{*d*} Viscosity = 4.334 cP at 37.8 °C. ^{*e*} Viscosity = 28.41 cP at 37.8 °C. ^{*f*} Cmc = 0.055 M at 25 °C. ^{*g*} Cmc = 0.013 M at 25 °C. ^{*h*} Viscosity = 3.429 cP at 37.8 °C. ^{*i*} Dodecyltrimethylammonium bromide. ^{*j*} Sodium dodecyl sulfate.

of sequestered chemical processes in solution. The transition from single molecule to aggregate has not been easy; virtually every aspect of micellar chemistry is now under debate. Consider, for example, the subject of this paper: molecular motion and viscosity inside a micelle. In a recent review it is written, "The micelle interior is viscous, as illustrated by the polarization of fluorescence of probe molecules dissolved in the micelle. Microviscosities approaching 100 cP have been measured".¹ Yet in a concurrent article one reads, "The intuitive view is that the interior of the micelle is like a liquid hydrocarbon droplet. Comparisons of the mobilities of fluorescence and ESR probe molecules solubilized in micelles and dissolved in organic solvents have shown that this is largely true ..."²

We describe herein an examination of micellar systems by means of carbon-13 spin-lattice relaxation times (T_1) . T_1 values have been widely used to explore the vagaries of molecular motion: anisotropic reorientations, flexibility differences along carbon chains, effects of intermolecular association on mobility.^{3,4} Previous scrutiny of micelles by the T_1 method has been based primarily on the concept of "segmental motion".⁵⁻¹¹ Thus, in 1973 Cordes et al.¹¹ showed that aggregation of *n*-octyltrimethylammonium bromide in water restricts the movement of the octyl carbons near the polar head more than those near the other end of the chain. Our own T_1 experiments rely not so much on the idea of segmental motion as on the observation that anisotropic motion relaxes unequally the ortho and para carbons of many monosubstituted benzenes.¹² Preferred rotation around the C_2 symmetry axis changes the direction of the ortho C-H bond (but not the para C-H bond) relative to the applied field. As a result, the ${}^{13}C{}^{-1}H$ dipole-dipole interactions relax the para carbon more efficiently than the ortho carbon $(T_1^{\circ} > T_1^{p})$.¹³ We have investigated anisotropic motion inside a micelle by means of T_1° / $T_1^{\rm p}$ ratios ("R" values) for monomeric and micellar ω -phenylalkanoic acids in aqueous base.

$$(CH_2)_n CO_2^ n = 1, 3, 7, 9$$

Results and Discussion

Molecular motion in surfactant aggregates is best analyzed using the monomeric state as a basis for comparison. There are three simple ways of achieving nonaggregated systems: operate below the critical micelle concentration of the surfactant; use an organic solvent in which micelles do not form; shorten the chain length of the surfactant to a point where the compound loses its surfactant properties under the experimental conditions. The first of these is in principle the most satisfactory because neither the surfactant nor the solvent is perturbed. Unfortunately, sensitivity problems preclude T_1 measurements below most cmc values; several weeks of machine time would have been required for a single T_1 experiment on ω -phenyldecanoate below its cmc. We therefore relied on a combination of the "organic solvent" and "shortened chain" methods to evaluate monomeric $C_6H_5(CH_2)_nCOOH$. One sees from Table I that long-chain acids (n = 7 and 9) in CH₃CN and short-chain acid anions (n = 1 and 3) in D₂O give equivalent results characteristic of the monomeric state: large T_1 's for the ortho and para carbons (2.0-7.4 s) and small R values (1.7-2.1).

 ω -Phenyloctanoate (n = 7) and ω -phenyldecanoate (n = 9) in D_2O exist predominantly as micelles at 0.50 M (the concentration of most of the T_1 runs). Critical micelle concentrations, determined by the dye method with pinacyanol chloride,¹⁴ were found to be 0.055 M for n = 7 and 0.013 M for n = 9 at pD 12.7. Presumably, the structure of the ω -phenylalkanoate aggregates does not deviate too radically from the conventional picture of micelles¹⁵ because the phenyl group is hydrophobic and known to be equivalent to 3.4 methylenes in lowering cmc values.^{16,17} Our cmc values are normal when compared to fatty acids of equivalent chain length.¹⁸ Diluting ω -phenyldecanoate with more prosaic surfactants (e.g., sodium dodecyl sulfate) does not change the T_1 parameters (Table I). Whatever the precise micellar structure, it is obvious that aggregation has a drastic effect on the absolute T_1 values of both the ortho and para carbons. For example, T_1^{p} decreases from 2.9 s to 0.39 s upon micellization of ω -phenyldecanoate. In addition, the anisotropy parameter R displays a marked increase from approximately 2 for the monomer to as high as 3.6 for the micelle.

Although the T_1 's for the micellar systems represent weighted averages of T_1 's from monomeric and aggregated surfactant, a correction to obtain "true" micellar values is unnecessary for ω -phenyldecanoate; the percentage of monomer under the experimental conditions is insignificant (2%). We did make a minor correction on the ω -phenyloctanoate data using eq 1 (T_1 , T_{1f} , and T_{1m} are the observed, monomeric, and micellar relaxation times, respectively; χ_f and χ_m are the corresponding mole fractions).¹¹

$$1/T_1 = \chi_{\rm f}/T_{\rm 1f} + \chi_{\rm m}/T_{\rm 1m} \tag{1}$$

Since exchange between micelle and monomer is rapid relative to $1/T_1$, the observed $1/T_1$ is a weighted average of the com-

Figure 1. Inversion-recovery plot for T_1 determination (peak height S in arbitrary units); ortho carbon of ω -phenyldecylate (0.50 M) at pD 12.7 and 37.8 °C.

ponent $1/T_1$ values. In accordance with the "phase separation" theory of micelles,¹⁹ we used the cmc to approximate the monomer concentration.

Absolute T_1° values in Table I can be used to gauge the microviscosity of the micelle interior. Monomeric ω -phenylacetic acid has a T_1° which decreases from 5.3 s in D₂O to 2.5 s in a glycerol solution of viscosity 4.33 cP and to 0.49 s in a glycerol solution of viscosity 28.4 cP. In contrast, $T_1^{\circ} = 1.4$ s for micellized ω -phenyldecanoate (with the macroscopic viscosity of the solution equaling 3.43 cP). If one assumes a linear relationship between T_1° and the reciprocal of the viscosity,⁸ then a T_1 of 1.4 corresponds to a micellar viscosity of 8.3 cP. By way of comparison, 8.3 cP is less than the value for neat dodecane at 23 °C (12.6 cP). Our T_1° data point clearly to a fluid micelle interior. This is consistent with work of others^{19,20} but not with the claim of a 100-cP microviscosity or the existence of a paraffin-like micelle core.²¹ No doubt the disparate opinions with regard to micellar viscosity originate in part from the nature of the specific experimental technique. For example, a large fluorescent probe molecule adsorbed into a micelle would likely experience mobility problems different from those of a small benzene ring.

Segmental motion in micellar *n*-octyltrimethylammonium bromide has been shown to cause a monotonic increase in the methylene T_1 's from 0.9 s at the head to 2.9 s at the tail.¹¹ The ionic head of the surfactant anchors the proximal carbons. The question arose as to how the phenyl group in the interior of the ω -phenyldecanoate micelles affects the mobility of the methylene chain. Thus a series of runs was performed with monomeric and micellar ω -phenyldecanoate in CH₃CN and D₂O, respectively, to determine T_1 values of the chain carbons α and β to the phenyl and carboxyl groups. The data are presented below.

monomeric

micellar

$$C_{6}H_{5}-CH_{2}-CH_{2}-(CH_{2})_{5}-CH_{2}-CH_{2}-CO_{2}-CH_{2}-CH_{2}-CH_{$$

Both monomer and micelle have interior methylenes with T_1 values similar to those of methylenes adjacent to the carboxylate. The phenyl group impedes segmental motion of the nearby methylenes, but the effect is no greater in the micelle than in the free state. This substantiates our conclusion that

the aromatic moiety is embedded in a relatively low-viscosity region inside the micelle.

We now turn to the issue of anisotropic motion within a micelle as determined by $R = T_1^{o}/T_1^{p}$. Since R is a ratio of relaxation times, the parameter is less sensitive to micellization than absolute T_1 values. For example, R for ω -phenyldecanoate increases from 2.1 as a monomer to 3.6 as a micelle. In order to prove that this change is in fact exceptionally large and significant, we must first discuss briefly data accuracy.²² The matter of data accuracy is covered in the Experimental Section, but it should be emphasized again that we evaluated one T_{\parallel} at a time under optimum settings (determined in a trial run) taking ten points between 0 and 75% recovery (Figure 1). This contrasts with the more usual procedure of measuring several widely different T_1 's in a single experiment, under less than optimum settings, and then using only three to five points per T_{1}^{23} As a result of our precautions, the experimental error in *R* is $\pm 10\%$.

Anisotropy parameters never assume large values. Diphenylacetylene, a classical example of a rigid tubular molecule which rotates preferentially about its long axis, has an R of only 2.9. An R = 3.6 for micellar ω -phenyldecanoate (among the largest ever measured) cannot be reasonably explained either by isotropic tumbling of the entire aggregate or by rotation of the surfactant molecule as a whole about its long axis.²⁴⁻²⁶ Anisotropic motion of the occluded phenyl group most likely relates to a favored spinning mode about the C-C bond joining the benzene ring and methylene chain.²⁷ An R = 3.6 corresponds to a rotation around this bond which is 11-fold faster than rotation about axes perpendicular to the bond.¹² A smaller rotational preference is observed for ω -phenyloctanoate (R =2.7) perhaps because the shorter chain results in a less compacted aggregate.^{28,29}

Adding 0.40 M cosurfactant (either sodium dodecyl sulfate or dodecyltrimethylammonium bromide) to 0.10 M ω -phenyldecanoate in D₂O dilutes the phenyl groups within the micelles. Yet the large R value for ω -phenyldecanoate persists in the mixed micelle systems (Table I). Accordingly, anisotropic motion cannot be ascribed solely to phenyl/phenyl interactions within the aggregate core. This experiment is important in relation to the lingering question of whether or not the micelles of ω -phenyl surfactants are "normal". A shortchain analogue, 4-phenylbutyrate, has relatively large T_1 values and an R of only 1.9 when adsorbed into sodium dodecyl sulfate micelles (Table I). Motional freedom thus depends on how deep the aromatic ring penetrates the micelle. This conclusion emphasizes the difficulties in generalizing from experiments involving large environmental probes (e.g., fluorescence depolarization probes) incorporated into micellar aggregates. A probe molecule measures a property at only one point (or a weighted average from several points) in what seems to be a continuum of environments.

Urea (4.0 M) and ethanol (25% v/v) both reduce the R value for 0.50 M ω -phenyldecanoate at pD 12.7 (Table I). Surprisingly, lowering the pD from 12.7 to 9.6 (just above the precipitation point) decreases R from 3.6 to 2.5. One might have expected partial production of the anionic head groups to have contracted the Stern layer and increased the value of R. Since just the opposite was observed, the aggregates probably *lose* compactness near precipitation conditions, causing a diminished rotational preference. Previous workers have also recorded peculiar behavior of fatty acids in less basic solutions.³⁰

Peripheral spin-lattice relaxation experiments were carried out on mixtures of 0.50 M ω -phenyldecanoate and 0.50 M ethanol (D₂O, pH 12.7, 37.8 °C). The methylene of *ethanol* was found to have a T_1 value of 6.6 s (compared to 14.2 s in D₂O without surfactant). Much smaller changes in the T_1 of this methylene occur when 0.50 M ethanol is mixed in D₂O

Menger, Jerkunica / Anisotropic Motion inside a Micelle

Table II. Reproducibility of T_1 Data for 4-Phenylbutyric Acid

Run	Ortho	Para	C2	C3	C4
1	3.51				
2	3.56				
3		1.93	1.82	1.81	1.91
4		2.10	1.70	1.85	1.97

with 0.50 M phenylacetate (13.4 s), 7.5% w/v γ -globulin (13.6 s), and 10% w/v Carbowax 6000 (12.6 s). We have for the first time provided direct evidence that low levels of ethanol are in fact adsorbed by micelles.³¹

Experimental Section

Materials. Pfaltz and Bauer ω -phenyloctanoic acid and ω -phenyldecanoic acid were found sufficiently pure to use as purchased. Other surfactants were crystallized prior to the experiments. Certified viscosity standards were obtained from Cannon Instrument Co.

 T_1 Measurements. Spin-lattice relaxation time measurements on a Varian CFT-20 spectrometer were first conducted on compounds with known T_1 values (ethylbenzene, camphor, dioxane, and phenol) using inversion-recovery pulse sequences. Only after convincing ourselves of the reliability of the methodology did we begin T_1 determinations with the surfactant systems. The following two precautions were considered especially important in minimizing experimental error: (1) Initial trial runs were carried out to select optimal pulse delays "PD" and increments "LI" and "LT" for each carbon. (2) Spin-lattice relaxation times were then determined for a single carbon at a time using the optimal settings for that particular carbon. We also kept the surfactant concentration as low as possible (≤ 0.5 M) because micelle size and shape are known to change at high concentrations. The combination of dilute solutions, repeat runs, and single-carbon T_1 's required substantial amounts of machine time (often 1 week per T_1). Typical conditions: pulse width = 23 μ s (calibrated), pulse delay $\geq 4T_1$, 10 points per run, 500 accumulations per point. The constancy of the equilibrium signal intensity was always checked over the entire time span of the run. Probe temperature was measured periodically (37.8 \pm 0.2 °C). Table II illustrates the degree of reproducibility commonly achieved with our system. On the basis of such repeat runs we believe that reported R values are accurate to ±10%.

The C-13 chemical shift of the ortho carbon appeared downfield from the para carbon in all systems. Assignments of the chain carbons α and β to the phenyl and carboxyl groups were made with the aid of reference compounds (pentanoic acid and 1-phenyldecane) along with literature data.32

Acknowledgment. This work was supported by grants from the National Science Foundation (Grant CHE-7402279) and by the National Institutes of Health (Grants GM-20336 and GM-21457).

References and Notes

- (1) J. K. Thomas, Acc. Chem. Res., 10, 133 (1977). The value of 100 cP represents an upper limit for bile salt micelles.
- L. R. Fisher and D. G. Oakenfull, Chem. Soc. Rev., 6, 25 (1977)
- E. Breitmaier, K.-H. Spohn, and S. Berger, Angew. Chem., Int. Ed. Engl., (3) 14, 144 (1975).
- (4) G. C. Levy, Acc. Chem. Res., 6, 161 (1973).
- (5) J. M. Brown and J. D. Schofield, J. Chem. Soc., Chem. Commun., 434 (1975). (6) A. A. Ribeiro and E. A. Dennis, J. Phys. Chem., 80, 1746 (1976)
- (7) R. T. Roberts and C. Chachaty, Chem. Phys. Lett., 22, 348 (1973)
- (8) G. C. Levy, R. A. Komoroski, and J. A. Halstead, J. Am. Chem. Soc., 96, 5456 (1974).
- (9) M. Ueno, H. Kishimoto, and Y. Kyogoku, Bull. Chem. Soc. Jpn., 49, 1776 (1976).
- (10) K. Kalyanasundaram, M. Grätzel, and J. K. Thomas, J. Am. Chem. Soc., 97. 3915 (1975)
- (11) E. Williams, B. Sears, A. Allerhand, and E. H. Cordes, J. Am. Chem. Soc., 95, 4871 (1973) (12) G. C. Levy, J. D. Cargioli, and F. A. L. Anet, J. Am. Chem. Soc., 95, 1527
- (1973)(13) D. E. Woessner, J. Chem. Phys., 37, 647 (1962). Under conditions of short correlation times (<10⁻⁹ s), the faster the rotation, the less efficient the
- relaxation, the longer the T_1 .
- F. M. Menger and C. E. Portnoy, *J. Am. Chem. Soc.*, **89**, 4698 (1967).
 J. H. Fendler and E. J. Fendler, "Catalysis in Micellar and Macromolecular Systems", Academic Press, New York, N.Y., 1975.
- (16) K. Shinoda and K. Mashio, J. Phys. Chem., 64, 54 (1960).
- (17) R. G. Paquette, E. C. Lingafelter, and H. V. Tartar, J. Am. Chem. Soc., 65, 686 (1943).
- (18) L. I. Osipow, "Surface Chemistry", Reinhold, New York, N.Y., 1962, p. 166
- (19) A. S. Waggoner, O. H. Griffith, and C. R. Christensen, Proc. Natl. Acad. Sci. U.S.A., 57, 1198 (1967).
- (20) M. Shinitzky, A.-C. Dianoux, C. Gitler, and G. Weber, Biochemistry, 10,
- 2106 (1971). (21) M. J. Povich, J. A. Mann, and A. Kawamoto, *J. Colloid Interface Sci.*, **41**, 145 (1972).
- (22) For experimental problems in ¹³C T₁ measurements see I. M. Armitage, H. Huber, D. H. Live, H. Pearson, and J. D. Roberts, J. Magn. Reson., 15, 142 (1974); G. C. Levy and I. R. Peat, *ibid.*, **18**, 500 (1975).
 (23) See ref 8, Figure 2.
 (24) Y. K. Levine, P. Partington, G. C. K. Roberts, N. J. M. Birdsall, A. G. Lee,
- and J. C. Metcalfe, *FEBS Lett.*, **23**, 203 (1972). (25) J. R. Lyerla, Jr., and T. T. Horikawa, *J. Phys. Chem.*, **80**, 1106 (1976).
- (26) G. W. Feigenson and S. I. Chan, J. Am. Chem. Soc., 96, 1312 (1974).
 (27) G. Brieger and T. Fu, J. Chem. Soc., Chem. Commun., 757 (1976).
 (28) H. W. Hoyer and A. Marmo, J. Phys. Chem., 65, 1807 (1961).

- For a study of rotational anisotropy of spin probes in micelles see J. F (29)Ernandes, S. Schreier, and H. Chaimovich, Chem. Phys. Lipids, 16, 19 (1976).
- (30) H. L. Rosano, K. Breindel, J. H. Schulman, and E. J. Evdt, J. Colloid Interface Sci., 22, 58 (1966).
- (31)J. W. Larsen and L. B. Tepley, J. Colloid Interface Sci., 49, 113 (1974).
- (32) T. Drakenberg and B. Lindman, J. Colloid Interface Sci., 44, 184 (1973).